Originally published as:

Müller, C., Robertson, R. D. (2014): Projecting future crop productivity for global economic modeling. - Agricultural Economics, 45, 1, 37-50

DOI: 10.1111/agec.12088

Available at http://onlinelibrary.wiley.com

© John Wiley & Sons, Inc.
Projecting future crop productivity for global economic modeling

Christoph Müller and Richard D. Robertson

Abstract

Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on land productivity and its spatial patterns. We here supply a set of climate impact scenarios on agricultural land productivity which is derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the upper end of impacts (high emission scenario only, assumed ineffectiveness of CO$_2$ fertilization on agricultural yields, no adjustments in management) but consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10 to 38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
1 Introduction

For the assessment of future climate change impacts on land-use patterns and agricultural markets, the AgMIP project (agmip.org) (Rosenzweig, et al., 2013b) together with the ISI-MIP project (isi-mip.org) has conducted multi-model simulations with harmonized data on future yield changes. These scenarios are designed to assess the upper end of climate change impacts, therefore addressing only a high-emission scenario, RCP8.5 (Moss, et al., 2010, Riahi, et al., 2011) and without considering possible growth-enhancing effects of higher atmospheric carbon dioxide concentrations ([CO$_2$]), which are subject to large uncertainties (Long, et al., 2006, Tubiello, et al., 2007) and require adjustments in management (Ainsworth and Long, 2005). The assessment of future climate change impacts on agricultural productivity is complex and the many interacting processes contribute to their large uncertainty (Müller, 2011, Müller, et al., 2011, Rötter, et al., 2011, Roudier, et al., 2011, Knox, et al., 2012). To account for the degree of uncertainty in climate projections (Randall, et al., 2007, Hawkins and Sutton, 2009, Hawkins and Sutton, 2011) and in yield projections (Rötter, et al., 2011), we supply yield projections from 2 global crop growth models, DSSAT (Jones, et al., 2003, Hoogenboom, et al., 2004) and LPJmL (Bondeau, et al., 2007, Fader, et al., 2010, Waha, et al., 2012, Schaphoff, et al., 2013) for 2 implementations of the RCP8.5 emission scenario in general circulation models (GCMs), HadGEM2-ES (Jones, et al., 2011) and IPSL-CM5A-LR (Dufresne, et al., 2013). These 2 crop models (DSSAT as a widely used field scale model and LPJmL as a widely used ecosystem based model) represent the two different groups of gridded global crop models. For more details on the differences between these model groups, see Rosenzweig et al. (2013a).

For global economic models, these biophysical climate change impacts on yields need to be aggregated and assigned to appropriate spatial and thematic entities, taking into account the
variability of data requirements across the global economic models. This paper describes the
simulation of changes in crop productivity under climate change and the aggregation of these
simulation results for use in the ten global economic models that participate within this AgMIP
project (Nelson, et al., 2013, von Lampe, et al., 2013) but also beyond.

2 Methods

2.1 Climate data

The high end emission scenario used here, the representative concentration pathway with a
radiative forcing of 8.5 Wm\(^{-2}\) (RCP8.5) (Moss, et al., 2010) reaches atmospheric carbon dioxide
concentrations ([CO\(_2\)]) of 540 ppm in 2050 and of 935 ppm in 2100. These emission scenarios
have been implemented by various climate models (general circulation models, GCM, and earth
system models, ESM) and have been supplied by the C5MIP project at http://cmip-
pcmdi.llnl.gov/cmip5/ (Taylor, et al., 2012). Differences in the climate models lead to a spread in
simulated temperature increase for a given greenhouse gas emission scenario (climate
sensitivity) and in the variability (daily, monthly, seasonal) and spatial patterns of change in
climatic variables (Hawkins and Sutton, 2009, Hawkins and Sutton, 2011). Figures 1-4 show the
change in temperature and precipitation patterns from the reference period (1980-2010) to the
2050s (2035-2065) for the HadGEM-ES2 (Jones, et al., 2011) and IPSL-CM5A-LR (Dufresne, et al.,
2013) models as used here. These climate scenarios differ not only in the spatial patterns of
climate change, but also in the seasonal distribution. At the level of food production units (FPU)
(Cai and Rosegrant, 2002), seasonal temperatures can increase homogenously or
heterogeneously, in which cases winter temperatures typically rise more strongly than summer
temperatures. Differences in temperature increase by 2050 between seasons can be up to 5.4 °C
and 2.6 °C for HadGEM-ES2 and IPSL-CM5A-LR, respectively. Annual mean temperatures in the
different FPUs are projected to increase by 1.45°C to 5.48°C (4.79°C) from 1990 (1981-2010) to 2050 (2035-2064), while changes in annual precipitation can range between increases of 49% (106%) and decreases of 29% (50%) in the HadGEM-ES2 (IPSL-CM5A-LR) scenario. A table with projected annual and seasonal climate change per FPU is supplied in the supporting online material.

Climate scenarios were selected based on availability of bias-corrected data sets from the ISI-MIP project. Bias correction was conducted to correct for over- and underestimation of climate variables and their daily variability in each 0.5° * 0.5° pixel of the land surface (about 55.5km * 55.5km at the equator). The bias correction method builds on Piani et al. (2010) but preserves absolute temperature and relative precipitation changes. The WATCH data set, which provides a good representation of real meteorological events and climate trends (Weedon, et al., 2011) served as reference climate here. Monthly mean values were corrected with absolute (temperature) and relative (precipitation, radiation) offsets that correct for each month’s difference between the 40-year mean of the GCM-simulated historic period (1960-1999) and that of the observation-based values of the WATCH data. For daily minimum and maximum temperatures, also the mean distance between these 2 values is preserved in the historic period. Daily variance within a month was corrected to match observations in the historic period. More details on the bias correction procedure and the selection of climate and reference data can be found in the work of Hempel, et al. (2013).

Both crop growth models were driven by the climate data provided by ISI-MIP (daily data from 1951 to 2099) and a standard set of management data, in order to simulate current management systems.
LPJmL was driven with the daily ISI-MIP data on daily mean temperature (T), precipitation (PR), shortwave downward radiation (SW$_{down}$) and longwave net radiation (LW$_{net}$). As longwave net radiation was not supplied by ISI-MIP, we computed it from the supplied longwave downward radiation (LW$_{down}$) and computed longwave upward radiation (LW$_{up}$) from surface temperatures, which we assumed to be equal to daily mean temperatures (T) following the Stefan-Boltzmann-law (equation 1).

\[LW_{net} = LW_{up} - LW_{down} = \sigma T^4 - LW_{down} \]

(1)

Where \(\sigma \) is the Stefan-Boltzmann constant of 5.670373×10^{-8} W m$^{-2}$ K$^{-4}$.

Daily weather information for DSSAT (T$_{max}$, T$_{min}$, PR, SW$_{down}$) was obtained in an indirect manner using a random weather generator (SIMMETEO) (Geng, et al., 1986, Geng, et al., 1988). The weather generator uses monthly and annual averages for climate variables (maximum and minimum temperatures, solar radiation, rainfall, and rainy days per month) to generate plausible daily realizations. The averages for each of these variables were obtained by taking the bias-corrected daily weather data from the GCMs (i.e., the data used for LPJmL) and aggregating over the appropriate years around the time intervals to be investigated (1981-2010 and 2035-2065). Random weather was generated for 80 growing seasons which resulted in 80 yields at each location modeled with the overall yield taken as the average over all 80 outcomes.

2.2 Computing climate change impacts on yields

For the simulations of climate change impacts in economic models, data on yield shifters is supplied for the entire global land surface (LPJmL) or current agricultural land (DSSAT) for all crops covered by the models for fully irrigated (i.e. no constraints on water supply) and rain-fed systems. To represent the assumed ineffectiveness of CO$_2$ fertilization at field scale, we here
keep the atmospheric CO₂ concentrations constant at the baseline level which was separately set at 370ppm for LPJmL and 369ppm for DSSAT after the year 2000.

2.2.1 DSSAT

DSSAT is a framework for crop models that employs daily time-step weather information and keeps track of hydrology and nutrient cycles using a soil module which considers a variety of soil characteristics (Jones, et al., 2003, Hoogenboom, et al., 2004). We employed the CERES models for rice (*Oryza sativa*), wheat (*Triticum* spp.), and maize (*Zea mays*) and the CROPGRO models for soybeans (*Glycine max*) and groundnuts (*Arachis hypogaea*).

Soil. DSSAT's soil module employs a soil profile definition that details the various soil layers and their properties. The most salient of these characteristics are the soil depth, water parameters (lower limit, drained upper limit, and saturation), root growth factor, bulk density, organic carbon content, and texture fractions. Our approach employs generic soil profiles with typical values chosen for these quantities.

The twenty-seven generic profiles are a combination of three by three soil characteristics. The first defining characteristic is organic carbon content with high, medium, and low values. These are combined with deep, medium and shallow soil depth cases. Finally, there are three texture types: sandy, loamy, and clay-like. For each case, e.g., “high organic carbon deep loam” or “low carbon shallow sand”, a representative soil profile is available. Each location is assigned one of these representative soils based on thresholds and rules applied to the Harmonized World Soil Database (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). For more details on this parameterization of soil properties in DSSAT see (Koo and Dimes, 2010).

Initialization. Soil moisture in each soil layer is set to 25% of its water holding capacity at the beginning of the simulations (supplementary Figure S5). Stable carbon pools are set based on
texture and depth (Basso, et al., 2011) (supplementary Figure S6-S7). Geographically distinct assumptions are made regarding root mass (supplementary Figure S8) and residues remaining from previous cropping activities (supplementary Figure S9) as well as initial soil nitrogen (supplementary Figure S10). Of these, the most influential is the initial soil nitrogen. After initialization, a spin-up period is employed. The simulation is begun 90 days prior to the anticipated planting date. The soil, hydrologic, and weather processes begin to operate and thus decrease the importance of the initial conditions.

Management. DSSAT yield simulations are not calibrated to yield statistics such as the FAO data base, but are determined by climate inputs and a set of management options, which is assumed to be static in time. The sowing dates are determined in four different ways, depending on the situation. We have developed rules which operate on monthly climate averages for temperatures and precipitation. These rules provide planting months for a generic rainfed crop (modeled on maize), a generic irrigated crop (modeled on rice; used when the rainfed rule fails), spring wheat, and winter wheat (Nelson, et al., 2010). This target planting month was determined using the climate averages from the 1981-2010 period and was used for both time periods. Adjusting planting dates was considered to be a form of adaptation that was to be captured in the economic models rather than at the biophysical stage. The actual planting date was determined by an automatic planting scheme in DSSAT. The planting window opens on the first day of the month determined by the rules. When the temperature and soil moisture fall within some predetermined bounds, the actual planting occurs, otherwise the repetition is excluded from the reported average over the 80 weather realizations.

Three major management considerations remain: fertilizers, irrigation, and harvesting. Nitrogen fertilizer application rate assumptions were made by geographic region (supplementary Figure S11-S13). The timing of fertilizer application was determined by rules based on the overall
amount to be applied and the time to flowering and maturity. Each crop had specific rules. Irri-

gated conditions were intended to represent a minimal water stress situation (water
availability and its effects were relegated to the domain of the economic models). An auto-
matic irrigation scheme in DSSAT was used such that when the soil moisture of the upper 0.2 m
falls below 70% of the water holding capacity, sufficient water is supplied to increase soil moisture to
100% of the water holding capacity. Harvest occurred at physiological maturity.

The CERES and CROPGRO models have the ability to represent a wide diversity in cultivars and
thus particular choices had to be made concerning which varieties to use. The process was
different for each crop, but usually involved several varieties along with maps indicating which
geographic areas they were appropriate for. For rice a generic Japonica variety was used along
with an Indica variety (supplementary Figure S14); for wheat eleven unique variety definitions
were used; for maize two generic varieties were used corresponding to characteristics typical of
developed world applications and the developing world; for groundnuts four varieties were used
for the developing world and a single variety for the developed world; and for soybeans thirteen
generic varieties were used (differentiated by maturity length) at each location, the highest
yielding variety was chosen.

2.2.2 LPJmL

LPJmL is a global dynamic vegetation, hydrology and crop growth model (Bondeau, et al., 2007,
Fader, et al., 2010, Waha, et al., 2012). It simulates crop yields of 12 different crops (Table 1),
that represent the most important crop types globally (temperate and tropical cereals, maize,
rice, pulses, temperate and tropical roots and tubers, soybeans, oilcrops) (Bondeau, et al., 2007)
and sugarcane (Saccharum spp.) (Lapola, et al., 2009). The version used here employs the latest
model improvements as a more complex soil hydrology as needed for the permafrost
implementation (Schaphoff, et al., 2013) and an implementation of a linear LAI-FPAR model for maize (Zhou, et al., 2002) and the minimum root-to-shoot ratios at maturity were set to 10% (based on insights from the AgMIP wheat (Asseng, et al., 2013) and maize pilots & (Prince, et al., 2001)).

Soil. The improved soil representation of the model (Schaphoff, et al., 2013) covers the upper 3m of the soil in 5 layers. Rain, melt and irrigation water infiltrates at the surface and percolates to deeper layers if above field capacity. Soil temperatures are determined by a heat conductance energy model (Schaphoff, et al., 2013). Plants transpire water according to their root distribution over the soil layers (Jobbágy and Jackson, 2000), while soil water evaporates only from the upper 0.2m.

Soil data are taken from Harmonized world soil database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The classification is based on the USDA soil texture classification (http://edis.ifas.ufl.edu/ss169), the hydraulic soil parameters (saturated hydraulic conductivity [mm/h], water content at wilting point/field capacity/saturation) are derived from Cosby et al. (1984) and the thermal parameters (thermal diffusivity (mm²/s) at wilting point, 15%, field capacity (100% whc), wilting point, saturation (all water), and saturation (all ice)) from Lawrence and Slater (2008), the suction head (mm) in Green-Ampt equation following Rawls, Brakensiek and Miller (1983).

Initialization. Soil conditions are not initialized but are determined in a 200-year spin-up simulation, recycling the first 30-years of that time series for the spin-up simulation. Such long spin-up is needed to ensure that soil temperatures are in equilibrium with climate before simulations start(Schaphoff, et al., 2013). Baseline and future conditions are simulated in a single transient run from 1951 to 2099, so that soil conditions in the future period (2050s) were determined by the simulated previous years.
Management. Apart from cultivar choices (Bondeau, et al., 2007), sowing dates (Waha, et al., 2012) and irrigation, management options are not treated explicitly in LPJmL. For the representation of current management patterns, national cropping intensity has been calibrated to FAO statistics as described in Fader et al. (2010). For this, three parameters, maximum leaf area index (LAImax m² of leaves per m² of ground), a scaling factor for scaling leaf-level photosynthesis to stand level (alphaA, Haxeltine and Prentice, 1996) and the harvest index (HI) are scaled in combination. LAImax can range from 1 (lowest intensity) to 7 (highest intensity), alphaA from 0.4 to 1 and HI has a CFT specific range (Bondeau, et al., 2007), which can be reduced by up to 20%, assuming more robust but less productive varieties in production systems with low productivity (Gosme, et al., 2010).

Accounting for the linear LAI-FPAR model for maize (Zhou, et al., 2002) and maximum intensity levels for maize now assume a maximum leaf area index of 5 instead of 7 as described by Fader et al. (2010). Nutrient dynamics are not explicitly represented in the model. Sowing dates have been computed as in Waha et al. (2012), but have been kept constant after 1951. The model decides internally whether to grow winter or spring wheat/rapeseed on wheat/rapeseed areas. It has a preference for winter varieties, but if winters are too long, it will grow spring varieties (Bondeau, et al., 2007). Algorithms to select varieties have been adjusted as described in Müller, et al. (2013). For irrigated crops, irrigation water is assumed to be available in unlimited supply. Irrigation is triggered if soil moisture falls below 90% of the water holding capacity. Harvest occurs at maturity.

2.3 Aggregation and extrapolation for economic models

Economic models that cover the agricultural sector work with very different resolutions of spatial, temporal and commodity resolutions, ranging from computable general equilibrium.
models (CGE, such as AIM (Fujimori, et al., 2012), EPPA (Paltsev, et al., 2005)), partial
equilibrium models (PE, such as GCAM (Thomson, et al., 2011, Wise and Calvin, 2011), IMPACT
(Nelson, et al., 2010, Rosegrant and IMPACT Development Team, 2012)) to land use models that
combine economic rationale with spatially explicit biophysical data on crop yields and water
availability (LUM, such as MAgPIE (Lotze-Campen, et al., 2008, Schmitz, et al., 2012) and
GLOBIOM (Havlík, et al., 2011, Havlík, et al., 2013)). The representation of dynamics in
agricultural land productivity and the production functions affected by this consequently differs
among models and is not directly compatible with the characteristics of gridded global crop
models. Consequently, climate change impacts on agricultural crop yields as computed by the
agricultural biophysical impact models DSSAT and LPJmL have been aggregated and also
extrapolated to match information requirements in economic models, which is described in
detail below. For a detailed description of the economic models that participated in this AgMIP

2.3.1 Mapping of crops to commodities

The biophysical impact models DSSAT and LPJmL explicitly simulate a variety of crops; however,
they do not match up precisely with the agricultural commodities represented in agricultural
economic models. Simulated dynamics in crop productivity were used to determine dynamics in
land productivity of the economic models’ commodities, wherever possible. For those
commodities which had no direct representation in the biophysical impact models, we used
simulated climate change responses in similar crops to estimate their response to climate
change. Similarity was based on the type of photosynthetic pathway (distinguishing C_3 crops
from C_4 crops), their main climate zone (temperate vs. tropical) and their susceptibility to
drought damage.
Following the crop-to-commodity mapping in Table 1, we supplied information on climate impacts on agricultural land productivity for 23 commodities. DSSAT simulations provide data on 5 different crops, wheat (whe), maize (mai), rice (ric), soybean (soy), and groundnut (grn). LPJmL simulations provide data for the 12 crops implemented in LPJmL, wheat, maize, rice, soybean, millet (*Pennisetum glaucum*, mill), rapeseed (*Brassica napus*, rap), sugar beet (*Beta vulgaris*, sugbe), sugar cane (sug), field peas (*Pisum sativum*, fpea), cassava (*Manihot esculenta*, cas), sunflower (*Helianthus annuus*, sunf), groundnuts, and managed grassland (gra). Both biophysical impact models supplied data separately for irrigated and rain-fed production.

2.3.2 Spatial resolution

While yield impacts have been computed on a regular geographic grid (30’ resolution), most economic models require information for administrative units. Consequently, yield data have been provided at their original resolution and in aggregated form for the IMPACT food production units (FPUs) [Cai and Rosegrant, 2002], which could then be further aggregated to the individual economic models’ needs. For the aggregation to FPUs, we used actual physical production areas for the individual crops from the SPAM data set, version 2 [You, et al., 2010]. Combining the areas and yields allows us to calculate the regional area-weighted average yield for each case. Most crops simulated by LPJmL and DSSAT here could be aggregated using crop-specific land-use patterns from SPAM, however, sunflower and rapeseed yields were aggregated with the areas of other oilcrops in SPAM as no crop-specific area data are available for these crops.

Using production area information, rain-fed and irrigated crop production as simulated by the models could also be aggregated to overall crop productivity if the economic model does not distinguish rain-fed from irrigated production.
2.3.3 Temporal resolution

Due to the differences in handling the climate and weather data, the yields entering the climate change impact calculations are aggregated slightly differently for the two crop models. While LPJmL simulated agricultural productivity of crops in a transient run from 1951-2099, DSSAT simulated only the year 2000 and the year 2050, using 80 realizations of daily weather variations from its weather generator (Geng, et al., 1986, Geng, et al., 1988). We used the average of 2000 to 2009 to represent the LPJmL crop productivity in 2000 and the average of 2050 to 2059 for 2050.

To fill the years between 2010 and 2050 for DSSAT simulations, the climate change induced changes in agricultural productivity were supplied as annual growth rates \(g \) from simulated reference \(P_{\text{ref}} \) and future production \(P_{\text{fut}} \), following equation 2 so that climate change impacts can be computed for any year between 2010 and 2050 in the economic models.

\[
g = (P_{\text{fut}} / P_{\text{ref}})^{1/40} - 1
\] (2)

For reasons of harmonization, data from LPJmL were also supplied in form of an annual growth rate. Additionally, due to the yearly yields available, annual and decadal effects were supplied. If an economic model is designed to take such information into account, this allows for addressing inter-annual/decadal variability of production.

At the FPU-level, aggregated yield shifters have been capped to avoid being overly sensitive to variations and model artifacts that may occur if the biophysical crop models simulate very low reference period productivities. The upper limit for positive climate impacts on yields was set to an annual growth rate of 0.53%/year (equivalent to 23.5% increase in 40 years), negative impacts were limited to 2%/year (equivalent to 63% decrease in 40 years).
3 Results

In all scenarios analyzed here, climate change leads to strong decreases in agricultural productivity in most of the agricultural area, but with some notable exceptions such as currently temperature limited mountainous or high-latitude areas. At the global scale, crop yields decrease by 9.9 to 37.6% by 2050 for the five crops simulated by both models (Table 2). While there is high agreement at the global scale on climate change impacts on rice and groundnut productivity across the two crop models and the two climate scenarios, DSSAT projects substantially more detrimental impacts on maize (-35.8% vs. -12.1% respectively) and wheat (-19.4% vs. -12.2% respectively) than LPJmL. Generally, climate impacts on crop yields have similar distributions between the crop models and climate scenarios (Figure 2), but the spatial patterns of impact differ in some cases significantly (Figure 3-4 and supplementary Figures S15-S29). It is noteworthy that already moderate changes in crop productivity and crop production can have significant impacts on agricultural markets and prices. This was demonstrated in the recent drought in the USA in 2012, where maize yields and production decreased by 18% and 12% respectively, but US maize exports had almost dropped by 50% in October and November 2012 compared to the already low export quantities in 2011 and to about a third of the peak export quantities in 2007 (Capehart, et al., 2012).

Figures 3-4 display spatial patterns for the crops as simulated by DSSAT and LPJmL for the 2 climate scenarios employed (also see supplementary figures for other crops). The spatial patterns of change cannot always be directly linked to the change patterns of climate variables and there are also differences between the 2 crop models’ projections. While the impact patterns show many similarities between the models/scenarios, there are important
differences. Rainfed wheat, for example is projected to increase in East (HadGEM and IPSL) and central (HadGEM only) Europe by DSSAT, while LPJmL simulates yield reductions throughout Europe. The slightly lower increases in annual mean temperature in HadGEM than in IPSL (Figures 1-2) lead to yield increases in the Russian-Kazakh border region in the HadGEM scenario but to decreases in the IPSL scenario. The main difference is that spring precipitation (March, April, May) is projected to increase significantly by HadGEM2-ES but to decrease in summer (June, July, August) while ISPL-CM5A-LR projects smaller variability of the seasonal distribution but rather sees a drying in spring and wetter conditions in summer in this region. Both agree on increasing winter precipitation (see supplementary Figure S1). For irrigated wheat productivity, DSSAT simulations are more optimistic in Europe and more pessimistic for India, China and Mexico (see also supplementary Figure S15).

For maize, the spatial patterns of yield changes agree well between the two crop models, but DSSAT projects significantly stronger yield changes almost everywhere, including the yield increase in the high latitudes in both rainfed (Figure 4) and irrigated cultivation (supplementary Figure S16).

Groundnut simulations are similar between crop models but more severe for IPSL for rainfed and for DSSAT for irrigated cultivation (supplementary Figures S17-S18).

For rice productivity, climate impacts do not differ much between the two climate models but DSSAT is more pessimistic for irrigated rice, while LPJmL is more pessimistic for rainfed rice cultivation under climate change (supplementary Figures S19-S20).
For soy, there are significant regional differences between climate and crop model simulations for rainfed soy productivity, while DSSAT is often more optimistic for irrigated conditions (supplementary Figures S21-S22).

Spatial variability of yields within food production units (FPUs) decreases more often than increases with climate change and more so in DSSAT simulations than in LPJmL (Fig 5) as does year-to-year variability both at the FPU (Fig 6) and grid cell level (supplementary figure S30) in LPJmL simulations.

A table with the crop-specific climate change impacts on yields per FPU for the four scenarios is supplied in the supporting online material.

4 Discussion

We here supply four scenarios of climate change impacts on crop yields, in high spatial and temporal resolution as well as in aggregated form in order to supply biophysical climate change impacts on crop productivity to economic models. The detail of information supplied, also in aggregated form allows for simulating changes in land use patterns, e.g. through land expansion, reallocation of cropping systems and land abandonment. Depending on mechanisms implemented in the economic models, costs for such changes in land-use patterns will have to be parameterized with observations (Schmitz, et al., 2013).

Given the low number of climate change impact scenarios (4), these can only partially cover the range of possible future climate change impacts. Even though these scenarios were designed to
represent high-end climate change impact scenarios, not all assumptions and model implementations are on the pessimistic side. We use only scenarios of the highest emission scenario (RCP 8.5) of the most recent emission scenario set (Moss, et al., 2010), the crop models were set up to exclude any adaptation mechanism (such as the adjustment of sowing dates) and any possible positive effects of CO₂ fertilization were excluded here. However, several aspects are excluded that have the potential to further decline yields. Ozone damage can substantially reduce crop yields (Bender and Weigel, 2011, Leisner and Ainsworth, 2012) and ozone concentrations are projected to increase especially in Asia but are projected to decline in North America and stabilize in Europe under the RCP8.5 scenario (Wild, et al., 2012). While the model setup of DSSAT with synthetic daily weather data prevents a direct accounting for changes in weather extremes, LPJmL is driven with daily (bias-corrected) data from the GCMs. The model, however, does not cover mechanisms that would allow for an assessment of extreme events under climate change (no increased heat sensitivity at anthesis, no crop damage under intense precipitation events such as hail storms). The scenarios are thus assuming no effects of increasing extremes on crop productivity here, even though these can have significant effects on crop yields (Asseng, et al., 2011, Hawkins, et al., 2013). Indirect effects of climate change on crop growth through weeds, pests and pathogens are not covered by the crop growth models here.

The assumption of static management systems is not without caveats as there are also adaptation measures that potentially can be implemented with limited extra costs, such as the adjustment of sowing dates to climate change, which can strongly affect the strength of impacts (Laux, et al., 2010, Folberth, et al., 2012, Waha, et al., 2013). However this setting also helps to avoid overlapping assumptions in biophysical and economic models: All adaptation efforts to compensate negative climate change impacts are exclusively addressed in the economic models,
while we here supply data on climate change impacts on agricultural productivity under static management assumptions only. Typically, adaptation in economic models is represented by a mixture of explicitly modeled mechanisms such as changes in resource allocation and/or in consumption patterns and aggregated response mechanisms, such as the investment in technological change, which does not distinguish individual measures such as breeding new varieties or better soil management (Dietrich, et al., 2012, Dietrich, et al., in press). For such aggregate adaptation mechanisms in economic models, adaptation options already included in the biophysical crop modeling cannot be excluded and the exclusion of adaptation measures in the crop models thus ensures consistency. This impedes a detailed analysis of adaptation options in agricultural production systems for which a stronger interaction between crop models and economic models would be necessary. The ability of the GLOBIOM model to select from different management systems per commodity (Havlík, et al., 2013) could facilitate an analysis of adaptation options in crop production management and via land-use change and price mechanism, but this detail in differences in sensitivity to climate change between crop management systems is not supplied here.

The effectiveness of CO₂ fertilization at field scale or even in national or global productivity and a crop model’s ability to project it is subject to considerable uncertainty and scientific debate (Long, et al., 2006, Tubiello, et al., 2007). While assuming no CO₂ fertilization is clearly a pessimistic assumption here, it is consistent with the idea of leaving adjustments in management to the economic models: Any beneficial effect of CO₂ fertilization on crop yields will require an adjustment in management to enable higher quantities. Otherwise nitrogen could become limiting and could result in reductions in quality (e.g. protein content) (Leakey, et al., 2009, Bloom, et al., 2010, Parry and Hawkesford, 2010). Changes in the chemical composition of plants under elevated atmospheric CO₂ concentrations could also have
detrimental effects on yields, as it was shown to impede the plants’ defense mechanisms against insect damage (Dermody, et al., 2008, Zavala, et al., 2008) and may interfere with the enzyme and hormone regulation in plants (Ribeiro, et al., 2012). As both crop and economic models at the global scale are not capable address these detailed feedbacks and the assumption to ignore CO₂ fertilization effects is consistent with this.

The selection of global circulation models (GCMs) is based on availability of climate scenarios and the modeling protocol of ISI-MIP and AgMIP only; it does not reflect the range of uncertainties from different climate models.

The aggregation of spatially explicit simulations of crop yields under climate change to larger spatial units, as required for most economic models, is inconsistent with the simulated land-use change by these economic models. Only models that are able to process spatially explicit data are capable of responding to climate change impacts by reallocating production within spatial production units (FPUs, countries). This allows for more flexible response to climate change patterns, especially as the spatial variability of crop yields within FPUs (Fig 5) changes as well under climate change, which is independent of the direction of change.

The variability in time is estimated for LPJmL only, since DSSAT is driven with 80 replica of the same year. Results show that temporal variability of FPU production (expressed as the coefficient of variation over a 30-year period around 2000 and 2050) increases about twice as much (64%) than it decreases (29%, see Fig. 6), a ratio that is also observed at the pixel level (supplementary Figure S30) as well as for irrigated and rainfed systems individually (supplementary Figures S31-S32).

At the same time, models that use spatially explicit yield shifter data may also see different yield trends as their initial and changing land-use patterns will very likely lead to a different weighting
scheme than used here based on the SPAM data. This means that climate change effects in economic assessments directly depend on the spatial aggregation method and can lead to different dynamics if aggregation weights (e.g. SPAM data vs. other land-use patterns) differ and if there are strong gradients in climate change within aggregation units. This is, e.g., the case in the USA (north-east for DSSAT, central for LPJmL) for wheat (Figure 3) or east China for maize (Figure 4). A direct comparison of economic models driven with spatially aggregated yield data and models driven with spatially explicit data is thus inhibited.

Mapping of simulated climate change impacts on specific crops to other crops and commodities not covered by the biophysical crop models is a suitable way to generate comprehensive climate change impact scenarios for all commodities. It is, however, also an additional source of uncertainty, especially if the plants’ properties are not similar (e.g. fruits that are typically from dicotyledon and perennial plants vs. the average of rice, wheat (both monocotyledon), soybean and groundnut (both dicotyledon) which are annual plants, see Table 1).

Practical matters constrained how many and which crops were chosen for modeling. Of course, there are more crops cultivated than there are reliable models of them. Still, there are plenty of models; within the DSSAT framework, there are representations of potatoes, cassava, sugarcane, sorghum, millet, cotton, chickpeas, and more. The lack of reliable input information for these, as well as the additional computational and organizational burden of handling the results led to the focus on the five major crops of rice, wheat, maize, soybeans, and groundnuts.

The uncertainty associated with mapping simulated bio-physical climate change impacts on specific crops to economic commodities is illustrated well by the case of sugarcane. While we simulate sugarcane plants directly in LPJmL (Lapola, et al., 2009), we do not with DSSAT here, but assume that climate change impacts on sugarcane are identical to those on maize for
DSSAT-based yield shifters (Table 1). While this is a reasonable choice, as both maize and sugarcane are C₄ plants (while the other crops simulated with DSSAT are C₃ plants), there are some important differences between the 2 crops that limit the comparability. Most importantly, the economically valuable part of maize is the fruit of the plant, while it’s the stalk in case of sugarcane. Climate change impacts are thus expected to be more severe in maize production, as the sensitive phenological stages of flowering and grain filling can be affected more strongly by climate change (Lobell, et al., 2011). Sugarcane productivity is also impacted by increasing temperatures, but radiation use efficiency (i.e. biomass accumulation per unit of light energy absorbed) only decrease at daily mean temperatures above 35°C (Singels, et al., 2005) and fruit development is unwanted, as flowering actually impinges on sugarcane yields (Berding and Hurney, 2005).

The two biophysical crop models employed here reflect the uncertainties in global crop modeling (Rosenzweig, et al., 2013a) to some extent. They differ with respect to model characteristics (e.g. radiation use efficiency model vs. more complex photosynthesis model) and management assumptions (cropping periods, co-limitation by nutrients vs. no explicit treatment of nutrients). Consequently, projections of climate change impacts on crop yields differ both at global (Table 2) and regional scales (Figures 3 and 4). While DSSAT simulations typically project stronger global impacts for wheat and maize than LPJmL, its projections of impacts for rice, soybean and groundnut are typically less detrimental than those of LPJmL. Differences between the climate scenarios are typically smaller than those between crop models at the global scale, but can be substantial in specific regions (e.g. rainfed maize in Europe for DSSAT or China for LPJmL, Figure 4).

Global-gridded approaches to crop modeling using climate change scenarios will help to illuminate these uncertainties in the economic realm leading to modeling improvements to
reduce them as well as assessing and edifying the robustness of the biophysical models. Results
from the global gridded crop model intercomparison of AgMIP and ISI-MIP as well as from the
wheat and maize pilots of AgMIP suggest that the uncertainty from different impact models is
typically larger than that from different climate scenarios (Asseng, et al., 2013, Rosenzweig, et
al., 2013a). More work to analyze underlying reasons and to improve model projections is
needed and will be coordinated by AgMIP. A harmonization of assumed management (growing
periods, cultivars, fertilizers, pest control) will be central to understand differences in climate
change impact assessments and will allow for separating impact uncertainty in uncertainty from
management and uncertainty from climate impacts.

490

Cheruy, F., Codron, F., Cozic, A., Cugnet, D., Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L., Guilyardi, E.,
Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner,
G., Labetoulle, S., Lahellec, A., Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I.,
Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray,
P., Viovy, N., Vuichard, N., 2013. Climate change projections using the IPSL-CM5 Earth
System model: from CMIP3 to CMIP5, Climate Dynamics. 40, 2123-2165.

Fader, M., Rost, S., Muller, C., Bondeau, A., Gerten, D., 2010. Virtual water content of temperate

Italy and IIASA, Laxenburg, Austria. available at http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/.

Folberth, C., Gaiser, T., Abbaspour, K. C., Schulin, R., Yang, H., 2012. Regionalization of a large-
scale crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of
maize yields, Agric Ecosyst Environ. 151, 21-33.

Geng, S., Auburn, J., Brandstetter, E., Li, B., 1988. A program to simulate meteorological
variables: documentation for SIMMETEO.

Geng, S., Penning de Vries, F. W. T., Supit, I., 1986. A simple method for generating daily rainfall
data, Agricultural and Forest Meteorology. 36, 363-376.

is the optimal partitioning of agricultural area in order to reduce pesticide use while
maintaining productivity?, Agricultural Systems. 103, 110-116.

Kindermann, G., Kraxner, F., Leduc, S., McCallum, I., Mosnier, A., Sauer, T., Obersteiner, M.,
2011. Global land-use implications of first and second generation biofuel targets, Energy
Policy. 39, 5690-5702.

Havlík, P., Valin, H., Mosnier, A., Obersteiner, M., Baker, J. S., Herrero, M., Rufino, M. C., Schmid,
E., 2013. Crop Productivity and the Global Livestock Sector: Implications for Land Use
Change and Greenhouse Gas Emissions, American Journal of Agricultural Economics. 95,
442-448.

Increasing influence of heat stress on French maize yields from the 1960s to the 2030s,
Global Change Biology. in press.

Hawkins, E., Sutton, R., 2009. The potential to narrow uncertainty in regional climate
predictions, Bulletin of the American Meteorological Society. 90, 1095-1107.

Hawkins, E., Sutton, R., 2011. The potential to narrow uncertainty in projections of regional
precipitation change, Climate Dynamics. 37, 407-418.

Haxeltine, A., Prentice, I. C., 1996. BIOME3: An equilibrium terrestrial biosphere model based on
ecophysiological constraints, resource availability, and competition among plant functional
types, Global Biogeochemical Cycles. 10, 693-709.

 correction -- the ISI-MIP approach, Earth System Dynamics Discussions. 4, 49-92.

Table 1: Mapping of biophysical crop yield simulations to agricultural economic commodities.

<table>
<thead>
<tr>
<th>Agricultural economic commodity</th>
<th>Mapping for DSSAT</th>
<th>Mapping for LPJmL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cassava</td>
<td>represented by the average climate effects on the 4 major C₃ crops modeled (rice, wheat, soybeans, groundnuts)</td>
<td>Cassava yield simulations directly applied</td>
</tr>
<tr>
<td>Groundnuts</td>
<td>Groundnut yield simulations directly applied</td>
<td>Groundnut yield simulations directly applied</td>
</tr>
<tr>
<td>Maize</td>
<td>Maize yield simulations directly applied</td>
<td>Maize yield simulations directly applied</td>
</tr>
<tr>
<td>Millet</td>
<td>represented by modified maize yield simulations, applying all the positive climate effects but only 50% of the negative effects due to better drought tolerance</td>
<td>Millet yield simulations directly applied</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>represented by the average climate effects on the 4 major C₃ crops modeled (rice, wheat, soybeans, groundnuts)</td>
<td>Rapeseed yield simulations directly applied</td>
</tr>
<tr>
<td>Rice</td>
<td>Rice yield simulations directly applied</td>
<td>Rice yield simulations directly applied</td>
</tr>
<tr>
<td>Soybeans</td>
<td>Soybean yield simulations directly applied</td>
<td>Soybean yield simulations directly applied</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>Maize yield simulations represent climate impacts on sugarcane</td>
<td>Sugarcane yield simulations directly applied</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>represented by the average climate effects on the 4 major C₃ crops modeled (rice, wheat, soybeans, groundnuts)</td>
<td>Sugar beet yield simulations directly applied</td>
</tr>
<tr>
<td>Wheat</td>
<td>Wheat yield simulations directly applied</td>
<td>Wheat yield simulations directly applied</td>
</tr>
<tr>
<td>Crop Type</td>
<td>Simulation Representation</td>
<td>Simulation Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Sorghum</td>
<td>represented by modified maize yield simulations, applying all the positive climate effects but only 50% of the negative effects due to better drought tolerance</td>
<td>Millet yield simulations represent climate impacts on sorghum</td>
</tr>
<tr>
<td>Oilseeds (sunflower, palm, total other oilseeds)</td>
<td>represented by the average climate effects on the 4 major C₃ crops modeled (\text{rice, wheat, soybeans, groundnuts})</td>
<td>Represented by sunflower yield simulations</td>
</tr>
<tr>
<td>Other Grains</td>
<td>represented by modified wheat yield simulations, applying all the positive climate effects but only 50% of the negative effects due to better drought tolerance</td>
<td>represented by modified wheat yield simulations, applying all the positive climate effects but only 50% of the negative effects due to better drought tolerance</td>
</tr>
<tr>
<td>Dryland Legumes (Chickpeas and Pigeon Peas)</td>
<td>represented by modified groundnut yield simulations, applying all the positive climate effects but only 50% of the negative effects due to better drought tolerance</td>
<td>represented by modified groundnut yield simulations, applying all the positive climate effects but only 50% of the negative effects due to better drought tolerance</td>
</tr>
<tr>
<td>Other C₃ crops (cotton, potatoes, sweet potatoes and yams, subtropical fruit, temperate fruits, and vegetables)</td>
<td>represented by the average climate effects on the 4 major C₃ crops modeled (\text{rice, wheat, soybeans, groundnuts})</td>
<td>represented by the average climate effects on the 4 major C₃ crops modeled (\text{rice, wheat, soybeans, groundnuts})</td>
</tr>
</tbody>
</table>
Table 2: projected changes in global productivity in percent for the five crops simulated by both models; wheat, maize, rice, soybean and groundnut

<table>
<thead>
<tr>
<th></th>
<th>Hadley DSSAT</th>
<th>Hadley LPJmL</th>
<th>IPSL DSSAT</th>
<th>IPSL LPJmL</th>
</tr>
</thead>
<tbody>
<tr>
<td>wheat</td>
<td>-17.7%</td>
<td>-11.5%</td>
<td>-21.0%</td>
<td>-12.9%</td>
</tr>
<tr>
<td>maize</td>
<td>-37.6%</td>
<td>-9.9%</td>
<td>-33.9%</td>
<td>-14.2%</td>
</tr>
<tr>
<td>rice</td>
<td>-15.7%</td>
<td>-18.2%</td>
<td>-16.4%</td>
<td>-16.1%</td>
</tr>
<tr>
<td>soybean</td>
<td>-16.8%</td>
<td>-20.0%</td>
<td>-13.0%</td>
<td>-29.8%</td>
</tr>
<tr>
<td>groundnut</td>
<td>-20.9%</td>
<td>-24.3%</td>
<td>-18.4%</td>
<td>-21.2%</td>
</tr>
</tbody>
</table>
Figure 1: Absolute changes in annual mean temperature [°C] (top) and annual mean precipitation [mm/day] (bottom) from 1980-2010 to 2035-2065 for the HadGEM-ES2 (left) and IPSL-CM5A-LR (right) models. Temperature changes above 8°C have been cut to facilitate better visibility of differences at lower temperature changes, which is more important for cultivated areas. Grey areas in the bottom depict regions with precipitation changes of less than 50mm/year (0.137mm/day). Seasonal changes are depicted in the supplementary Figures S1-S4.
Figure 2: Fractional changes \(\frac{P_{\text{had}}}{P_{\text{ref}}} - 1 \) in crop productivity comparing the 2 crop models (red \(\times \): DSSAT, blue \(+ \): LPJmL) and climate models HadGEM (x-axis) and IPSL (y-axis) for the 5 jointly simulated crops (maize, wheat, rice, soybean, groundnut) for all FPUs.
Figure 3: Relative changes in rainfed wheat productivity as projected by DSSAT (top) and LPJmL (bottom) for the HadGEM-ES2 (left) and IPSL-CM5A-LR (right) climate scenarios for the RCP8.5 emission scenario. Dark grey areas are currently not used for cultivation of rainfed wheat (Portmann, et al., 2010).
Figure 4: Relative changes in rainfed maize productivity as projected by DSSAT (top) and LPJmL (bottom) for the HadGEM-ES2 (left) and IPSL-CM5A-LR (right) climate scenarios for the RCP8.5 emission scenario. Dark grey areas are currently not used for cultivation of rainfed maize (Portmann, et al., 2010).
Figure 5: Yield diversity in food production units (FPU, i.e. across pixels within a FPU) decreases more often than increases under climate change. Blue symbols indicate yield diversity as simulated with LPJmL, red symbols indicate yield diversity as simulated by DSSAT. Crosses (×) indicate simulations for IPSL-CM5A-LR climate scenario, double-crosses (∗) indicate simulations for HadGEM2-ES.
Figure 6: Year-to-year variability increases more often than decreases. Colors depict point density in the scatter plot (log scale). The total number of FPUs (8309) is the sum of FPUs (max 281) for the 12 LPJmL crops simulated here summed for irrigated and rainfed management systems and for 2 climate scenarios. Black line is 1:1 line.